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1     Introduction 

To deliver reliable Multichip Modules (MCMs) in the face of rapidly changing technology, 

computer-based tools are needed for predicting the thermal mechanical behavior of various MCM 

package designs and selecting the most promising design in terms of performance, robustness and 

reliability. The design tool must be able to address new design technologies, manufacturing 

processes, novel materials, application criteria, and thermal environmental conditions. 

Furthermore, the tool must be able to assess the thermal-mechanical and electrical performance of 

various alternative device configurations as quickly as possible and select the optimum design 

configuration as early as possible in the design process. This is extremely important because 

studies have shown that, while the bulk of a product's life cycle cost may be incurred in its later 

stages, these costs are actually committed early in the design process. Reliability is one of the 

most important factors for determining design quality and hence must be a central condition in the 

design of Multichip Module packages. Reliability must be designed a priori into the device since it 

cannot be added a posteriori after product development. 

In an ideal design environment engineers would draw upon extensive empirical databases of 

from previous design efforts to help determine which device configurations offer superior 

electrical, thermal and mechanical performance characteristics. Unfortunately, in the real world of 

multichip modules such databases seldom exist. Another approach to the reliability assessment of 

devices is the use of deterministic failure prediction methods. Most of these methods require the 

use of numerical tools for predicting the mechanical behavior of the device since accurate closed 

form analytical solutions are almost impossible to obtain. The shortcomings of some of the 

existing failure prediction methods is discussed in Section 2. 



Clearly, design engineers need computer based simulation tools for rapid and efficient 

electrical, thermal and mechanical modeling and optimization of advanced devices. For three 

dimensional thermal and mechanical simulation of advanced devices, the finite element method 

(FEM) is increasingly becoming the numerical method of choice. FEM is a versatile and 

sophisticated numerical technique for solving the partial differential equations that describe the 

physical behavior of complex designs. For this purpose the design must be geometrically 

represented and discretized into a number of subdivisions, known as elements and connected by 

points called as nodes. This process is known as meshing, resulting with a finite element mesh. 

Based on the analysis results and the accuracy required by the user, the mesh may need to be 

further refined by increasing the number of nodes (i.e., the degrees of freedom) in the mesh. Thus, 

the development of a sufficiently accurate and valid finite element model of a physical system is an 

iterative and often time consuming process. 

The inherent expertise, complexity and time involved in finite element modeling and analysis 

has been currently limited in its application as a tool for early design evaluation. Yet, it is possible 

to overcome these drawbacks and offer engineers a finite element based design tool for rapid 

design evaluation by simply applying proven artificial intelligence technology, feature based 

modeling and object oriented techniques to streamline and automate finite element modeling and 

analysis as much as possible. Finally, by adopting into the design process the concepts espoused 

by Taguchi and others for high quality manufacturing, a high quality design methodology for 

multichip module packages can be realized. In this manner the design space for advanced package 

design can be efficiently explored early in the design process and the most promising package 

configuration in terms of performance and robustness can be selected for prototyping and testing. 



Ideally, a design engineer would want all the features described above integrated and 

implemented as a single multichip module package design tool. Most of the tools available today 

usually employ either finite element techniques [1] or finite differences and analytical techniques 

[2] for MCM design, analysis, and reliability assessment. AUTOTHERM™ is a MCM design tool 

developed by Mentor Graphics for Motorola Inc. [1]. This tool performs thermal analysis of 

MCM packages using finite element analysis techniques. The tool uses the philosophy of object 

oriented representation of components and simplified specification of boundary conditions for the 

thermal analysis so that the user need not be an expert in using finite element techniques. The 

MCM design package CADMP [2] is a PC based design tool that allows thermal analysis and 

consequent reliability assessment of IC, hybrid and MCM packages. Different package types that 

can be assessed are dual-inline package (DIP), quad flatback (QFP), pin-grid array (PGA), single 

in-line package (SIP) and land grid array (LGA). Finite difference techniques are used for 

performing the thermal analysis. It also has the capability to include various components such as 

substrate, substrate attach, leads, lead seal and interconnects. Environmental conditions can also 

be modeled. Finally, it includes a detailed reliability analysis module which allows the user to 

choose a desired failure mechanism (model). Reliability analysis is performed based on the thermal 

solution. 

All of the current tools perform thermal and or stress analysis and do not address the issues 

of robustness and optimality of MCM designs. Moreover, the reliability prediction techniques 

(cycles to failure, Nf) are based on closed form analytical models and often fail by order of 

magnitude in predicting Nf. They can, at best, be used to compare different designs. This 

philosophy is adopted in the current research. Candidate MCM designs are evaluated in terms of 



the reliability performance parameters (maximum temperature/stress/strain) rather than the 

absolute reliability of the device. In this regard we propose a methodology and associated 

computer based design tool for multichip modules which embodies these ideas and addresses the 

issues of optimum and robust MCM package designs, an issue that has not been addressed by any 

of the tools discussed above. An object oriented approach and design of experiments 

methodology is adopted and integrated into the already existing Intelligent Multichip Module 

Analyzer (IMCMA) system. The different features of IMCMA are briefly outlined in Section 4. 

The reader is referred to [3] and [4] for additional details. 

2 Problems with existing MCM design quality assessment 

MCM design configurations are usually evaluated based on the reliability (cycles to failure) of 

the device. Previous research has shown that the various modes of failure in such packages can be 

broadly classified into structural or mechanical and non structural or electrical modes of failure [5] 

[6]. Based on data it can be inferred that the electrical modes of failure comprise about 10% of 

total component failures, thus indicating that the mechanical modes of failure are more critical [7]. 

To predict the reliability of MCMs, the failure mechanisms need to be identified and modeled 

accurately. This is done using failure prediction modeling techniques. Figure 1 schematically 

outlines the existing methods of failure prediction techniques. The various failure prediction 

modeling techniques can be broadly classified into two methods: empirical failure prediction 

methods (EFPMs) and deterministic methods. EFPM models are based on field data on systems 

and accelerated tests of various components. EFPM models can take advantage of extensive test 

and field data and accommodate irregular (actual) loading patterns. This data is used to compute a 

mean time between failures (MTBF). Depending on the quality of data MTBF results may vary 



dramatically. The problems with application of these methods to MCM reliability assessment is 

the lack of experimental data. 

r Existing Reliability Prediction of MCMs 
(based on mechanical modes of failure 
which form 90% of all MCM failures) 

A 

Empirical Failure Prediction 
Methods (EFPM) 

- evaluates Mean Time Between 
Failures (MTBF) based on test 
data 

Problems; 

- diversity of test data sources 
dramatically affect consistency 
of MTBF results 

- lack of sufficient MCM test data 

Deterministic Methods 
- evaluate average time to failure 

for fatigue, creep etc. 

* Physics Based 
- difficult to correlate results with 

empirical failure data 
- failure mechanism not well understood 

> Non-Physics Based Aleorithms 
(closed form analytical expressions for 

reliability) 
- require numerous simplifications 
- closed form solutions are not extendable 
- very domain specific 

V 

CONCLUSION: 

- absolute evaluation of MCM designs 
cannot be done with the above methods 

- there is a need for a better method to 
efficiently compare quality of MCM designs J 

Figure 1: Existing methods of reliability prediction of MCM package designs 

Deterministic methods use physics of failure concepts to determine an average and in some 

cases, a minimum time to failure for fracture, fatigue, creep rupture corrosion and general 

mechanical   wear.   These   methods   require   inputs   of  certain   quantities   like   maximum 

stress/strain/temperature for the component whose reliability has to be predicted based on certain 



loading conditions. These quantities, usually estimated using finite element methods, are often 

difficult to correlate with empirical failure data due to the following reasons. 

► The mechanisms of failure are still not well understood. 

► The prediction techniques based on physics of failure models are highly inaccurate. 

► The material properties of the materials used in MCMs cannot be accurately determined 

Other failure prediction methods are non-physics based which present closed form analytical 

expressions for reliability. Such closed form solutions can only be arrived at after making 

numerous simplifying assumptions regarding the thermal and mechanical behavior of the device. 

The validity of these assumptions must be verified by fabrication and device testing. Moreover, 

the closed form solutions cannot be extended beyond the very narrow scope for which they have 

been derived. For these reasons nonphysics based reliability prediction methods are not suitable 

for early design optimization of MCM packages. The following section outlines the proposed 

methodology for evaluation and optimization of candidate MCM package designs. 

3 Proposed MCM design quality assessment 

To get an a priori estimate of the quality of a design, a new methodology needs to be 

adopted. We propose to incorporate design of experiments (DOE) techniques into our design 

process. Any of the standard DOE techniques currently in use could have been selected. 

However, the Taguchi method has been adopted primarily due to it's ease of implementation. The 

assumptions inherent to DOE (sometimes restrictive) are not a burden to this proposed 

methodology [8], [9] and [10]. 

For design optimization, candidate MCM designs are compared and evaluations are made 

relative to each other. The approach taken in the present research for assessing design quality is to 



infer the design quality directly from the mechanical performance parameters (PPs) such as the 

maximum temperature, stress and total strain range (TSR). It is well known that these parameters 

directly affect the reliability of the device. For example, a design with a lower performance 

parameter value is presumed to be having a higher intrinsic design quality when compared to a 

design which has a higher performance parameter value. Note that in this approach the absolute 

reliability of a device, such as the number of cycles to failure is not sought. Instead, it can be 

argued that early design decisions are made in a relative context, and therefore design engineers 

are more interested in the relative performances of various design configurations. 

Performance parameters discussed above are obtained based on certain loading and boundary 

conditions after performing a finite element analysis. Because the finite element method provides a 

numerical solution of the governing differential equations and boundary conditions, it does not 

have robustness problems associated with non-physics based reliability prediction methods. If 

properly applied, it does not suffer from accuracy and applicability problems associated with 

closed form analytical solutions. 

Before presenting the proposed methodology, the concepts of optimality and robustness in 

the context of modeling and design applicable to the domain of MCM packages are discussed in 

the following section. 

3.1 Optimality and robustness 

During the stages of physical idealization and the finite element modeling and analysis process, 

various modeling simplifications are made to enable rapid finite element analysis. As with all 

modeling processes, these modeling simplifications invariably affect the accuracy of the solution 

obtained. Hence, they are to be selected judiciously by the designer. Modeling simplifications that 



produce the least variation in the performance parameter imply that the finite element model is 

robust with respect to them. 

Using the Taguchi DOE technique, we can investigate candidate designs based on one or 

more performance parameters. This method has been successfully used to improve the robustness 

of electronic circuits [11]. Using this method the designer can get useful information regarding 

how each of the design parameters affect the performance of the design. Various virtual 

experiments are run as outlined by the Taguchi design of experiments method which is a fractional 

factorial set of experiments. The results are then used to obtain an optimal design configuration 

based on the nature of the performance characteristic. For example, if the performance parameter 

is chosen as maximum temperature, then it is always desirable to chose the MCM design having 

the lowest maximum temperature as the optimal design from a mechanical behavior viewpoint. 

By performing statistical calculations on the outcome of the experiments, one can obtain 

sensitivity information to identify design parameters that affect the performance parameter, and 

quantify them relative to each other. The Taguchi method uses a statistical technique called 

ANOVA (analysis of variance), which breaks the total variation in an observed experimental 

outcome into the relative percent contributions of factors which influence the experimental 

outcome. With the Taguchi method applied to experimental results we can obtain sensitivity 

information about the various design parameters as follows. 

(a) Near-optimum design factors can be identified. 

(b) Design parameters that contribute to the results can be identified and quantified. 

(c) Predict the the expected result of the optimal design parameters. 

For example, if there are 3 design variables (viz. A, B and C) discretized at two values, the 

equation for total variation may be written as : 
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SST= SSA+SSB+SS^ +SSC+SSAXC+SSBXC+SSAXBXC+SSE 

However, with reduced fractional factorial designs, the model becomes 

SST= SSA+SSB+SSC+SSE 

where, all interaction effects are confounded with the main effects of each design parameter. The 

term SSA is called the sum-of-squares of design variable A and is defined as: 

SSA = 

where 

T = sum of all outcomes 

A; = sum of all outcomes of design parameter A at level i 

n^ = number of outcomes of design parameter A at level i. 

Similarly SSB and SSC are calculated. It should be emphasized that the MCM "virtual" 

experiment described above is completely deterministic, as opposed to any real world experiment. 

That is, for a given set of design parameters and corresponding finite element model, there is no 

variation in the outcome. In essence, in a finite element simulation there are no uncontrolled 

factors which influence the predictability of the outcome and thus, for our virtual experiment SSe 

will be zero. 

The percent contribution for each factor is not dependent on the error variance and for 

factor A, is computed using PA = SSA/SST*100. Similarly, PB and Pc for design parameters B 

and C are computed. The portion of the total variation attributed to each design variable is 

reflected in the percent contribution. If the design variables and interaction levels were controlled 

precisely, then the total variation could be reduced by the amount indicated by the percent 



contribution. The design variable with the highest percent value contributes most towards the 

variation observed in the experiment. 

Other possible design variables for MCMs could be material properties associated with 

specific die attach materials, lead type, thicknesses of MCM layers, package lid, cavity depth, 

prescribed boundary conditions which may fluctuate, the number of chips in a cavity, etc. 

Virtually any continuous or discrete parameter (and even a selection of component type) can be a 

design variable in a Taguchi design of experiments methodology. This and the reduced number of 

experiments required to obtain near optimum designs are the main advantages of the Taguchi 

approach compared to more restrictive and computationally formal mathematical optimization 

techniques. 

The fact that an optimal design may give an optimum performance level and NOT 

necessarily a performance consistency raises the issue of the robustness in the optimal design. 

The philosophy of a robust design is not to control the sources of variation affecting the design 

but make the design insensitive to their variability. The sources of variations affecting the 

performance of a design can arise from either manufacturing inconsistencies, environmental 

conditions or the variations in the design parameters themselves. The Taguchi method of design 

of experiments can also be used to obtain robust, near optimal designs by using two sets of 

orthogonal arrays, one called the inner array and the other called the outer array. The inner array 

is formed with the design parameters and the outer array is formed with other sources of 

variations, e.g., modeling simplifications, tolerances etc. 

However, it is to be noted that the robust optimum design configuration obtained is not 

necessarily the global optimum. This is because with the Taguchi method the design space is 

10 



represented by discrete values of the design parameters which does not take into account the 

values the design parameters can have between or beyond these values. Nevertheless, this 

information can be used as a starting point in the search for an optimum design configuration for 

which other more mathematically rigorous optimization techniques could be used. 

In the following section we propose a methodology that uses the Taguchi based DOE 

technique to obtain: 

- a robust finite element model of a MCM package and 
- a near optimal and tolerant MCM package design 

It is assumed that the reader is familiar with the standard Taguchi DOE terminology that is 

being used in this report. If not, the reader is referred to any standard text on this subject ([8], [9]) 

3.2 Proposed methodology 

The proposed methodology for MCM package design consists of three main steps: 

► Parametric design 

► Design space reduction 

► Tolerance design 

Figure 2 is an illustration of the proposed design methodology. 

Parametric Design: This involves obtaining a robust finite element model and identifying a 

near optimal design based on the robust model. First, the designer identifies the complete design 

space which constitutes a set of design parameters that define the MCM design, the number of 

discrete levels and values at each level that are to be investigated. Similarly, the modeling 

simplification parameters along with number of levels and values at the levels are also identified. 

A performance parameter upon which the designs are rated and an allowable variance measure 

representing the maximum acceptable variance of the performance parameter due to different 

11 



values of modeling simplifications are then specified by the designer. The design parameters and 

their levels constitute a Taguchi inner array, while the modeling parameters and their levels are 

represented in a Taguchi outer array. These arrays are now "crossed" and the corresponding 

virtual experiments (finite element analysis simulations) are run to obtain the performance 

parameter value for each virtual experiment. Statistical analysis is then performed on the 

performance parameter values, and the variances in these values due to the modeling 

simplifications are determined. 

If the computed variance of the performance parameter due to each modeling simplification 

is acceptable (below the specified acceptable variance), it implies that the modeling simplifications 

have no appreciable effect on the estimate of the performance of the design. Hence, any value can 

be selected for each of the modeling simplification parameters. Consequently, a judicious choice 

of modeling simplification parameter values, as is in our case, will be ones that will result in the 

most rapid finite element simulations (with least computational time). If any of the variances in the 

performance parameter due to certain modeling simplifications is above the acceptable variance 

specified, then it is suggested that the designer use the conservative values for the modeling 

simplification parameters to avoid large errors in the performance parameter values due to errors 

in finite element simulations. The performance parameter values corresponding to the modeling 

simplification parameter values chosen above are now used to generate an optimal combination of 

design parameter levels. A standard Taguchi statistical analysis is then used to compute the 

percent contribution of modeling simplification parameters to the performance parameter. 

12 
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Figure 2: Flowchart of the proposed methodology 
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Design space reduction: Based on the percent contributions of the MCM design parameters 

obtained at the end of the previous step, only those parameters to which the performance 

parameter of the design is (relatively) more sensitive are chosen for a tolerance design. This 

selection of the sensitive parameters are based on some user specified cut off value for the percent 

contributions. All the other MCM design parameters are fixed at the optimum levels obtained 

from the parametric design. 

Tolerance design: In this step the effect of tolerances on the sensitive MCM design 

parameters are investigated to obtain an MCM design that is robust with respect to the above 

assigned tolerances. At this point, it is necessary to emphasize that all the statistical analysis 

results of the design of experiments is valid only for the corresponding design space selected by 

the user and the nature of the numerical simulations (finite element analysis) being used. The finite 

element simulations do not suffer from any nonrepeatability problems and hence errors due to 

either the environment or the simulation method that cannot be measured, do not exist in the 

model or analysis. For this purpose the sensitive design parameters are represented in the inner 

array and the tolerances on them are represented in the outer array. The arrays define the 

corresponding virtual experiments which are performed to obtain the performance parameter 

values. A modified signal to noise (S/N) ratio, different from those suggested by the Taguchi 

approach (see appendix A), that minimizes both the mean and the variance in the performance 

parameter is used to obtain a design that has least variation with respect to the tolerances on the 

design parameters. 

The three step approach outlined in this section allows the designer to first generate a robust 

model that closely represents the physical system, then obtain significant design parameters 

14 



affecting the performance of the design and finally investigate the effect of tolerances on these 

significant design parameters. In this manner a robust MCM package design that is least sensitive 

to the tolerances on the MCM design parameters is obtained. In addition, the values of the 

modeling simplification parameters for robust modeling are generated. The design of an MCM 

example to illustrate the above methodology is presented in Section 7. 

To enable effective use of the above discussed methodology and obtain robust and optimal 

MCM designs, there is a need for a software tool that supports this design methodology. The 

Intelligent Multichip Module Analyzer (IMCMA) is a computer aided design tool based on a 

blackboard based system architecture that uses an object oriented data representation and is 

briefly outlined in Section 4. The following section explains how the design of experiments 

technique has been implemented into specific software modules and fully integrated into the 

IMCMA blackboard-based modeling system. 

3.3 Design Of Virtual Experiments (DOVE) 

Design Of Hrtual Experiments (DOVE) is a methodology to study the design quality of MCM 

packages by rapid comparative evaluations of candidate MCM package designs. The 

methodology uses the Taguchi-based Design of Experiments (DOE) technique, which minimizes 

the number of experiments required to sample the entire design space. Based on a user-defined 

MCM package design space consisting of design variables and their levels, input via a graphical 

user interface (GUI), a set of finite element thermal simulations are performed. Since these are 

computer simulations, they are referred to as virtual experiments in contrast to real experiments. 

The design quality of one MCM package device relative to another is assessed in terms of the 

maximum temperature in the package that correlates with the thermo-mechanical performance of 

15 



the device. A statistical-based analysis is performed on the maximum temperatures obtained from 

the experiments and the results are graphically represented in the form of pie, bar and xy graphs 

and an ASCII file with the extension "dove." 

It should be noted that at the present stage of development the evaluation of the MCM design 

electrical design issues are not being considered. The near optimal MCM package design is based 

purely on the thermal performance of the MCM. In reality, electrical performance issues are 

critical in deciding on the optimality of a MCM design. Robust MCM design based on electrical 

design parameters using Design of Experiments techniques is discussed by Iqbal [12]. The author 

outlines the application of use of Response Surface Analysis which is a type of DOE technique to 

obtain robust electrical MCM designs. Electrical performance was evaluated in terms of signal 

propagation characteristics. This work clearly demonstrates the applicability of the methodology 

being proposed in the report for mechanical (thermal) design and how it can be easily extended to 

electrical design. Thus, the proposed Design of Virtual Experiments methodology can be 

extended to include one or more metrics related to electrical performance of the MCM. In this 

regard MCM routing tools or wiring heuristics seem most appropriate to evaluate a particular 

MCM package design, since the values of the MCM package design parameters will strongly 

affect how the MCM is routed. For this purpose a software system (tool) would be integrated 

with the existing system (IMCMA) that would evaluate the electrical performance of MCMs 

based on the geometry, routing and placement information by performing circuit simulations. 

Such a tool is presented by Liao [13]. This tool developed at INTEL was used for the design of 

the /'486TM1 microprocessor based MCM. Electrical computer aided design (ECAD) systems 

such as this can be interfaced with the existing system (IMCMA) to obtain the electrical 

1    ;486 is a trademark of Intel Corporation 
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performance of candidate MCM designs. Integration of such software tools with IMCMA is easily 

done due to the blackboard based system architecture described in the report. Upon incorporating 

such tools and adopting the methodology proposed in the report, the design engineer will be able 

to obtain robust MCM designs based on either electrical and/or mechanical performance. 

The DOVE module is completely integrated into the Intelligent Multichip Module Analyzer 

(IMCMA) which is built on an object-oriented blackboard based framework of GBB2 version 3.0. 

Details of this integration is explained in Section 5. The DOVE module can be started from the 

main IMCMA-GUI by sequentially mouse clicking on "FILE" and "Run DOVE" to bring up 

the DOVE-GUI window titled "Design of Virtual Experiments." 

Some important features of DOVE are listed below. 

► Design Quality: Bases quality of MCM on relative thermal behavior which is known to 

drive thermal-mechanical behavior. 

► Near-Optimum  Design;  Identifies  "best" MCM package design among possible 

package designs by performing comparative evaluations instead of absolute evaluations. 

► Inexpensive   early   design   quality   evaluations:   Emphasis   is   placed   on   rapid 

exploration of design space by evaluating a fractional factorial set of experiments. 

► Sensitivity Analysis: Helps identify user-selected design parameters that affect the 

MCM package design performance the most. 

► Robust Modeling: Allows judicious selection of modeling simplifications by providing 

an insight into their effects on performance of the MCM design. 

2 GBB is a registered trademark of Blackboard Technology Group 
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► Easily Expandable: The methodology is applicable to a wide gamut of MCM package 

configurations (MCM-L, MCM-C, MCM-D) and is easily expandable to future MCM 

package designs 

With the design of experiments methodology, numerous candidate MCM designs can be 

rapidly evaluated at the early design stage. The most promising of these designs are selected for 

manufacturing and testing to more accurately estimate the absolute reliability of the MCM design 

in terms of minimum cycles to failure or MTBF. 

For a design space consisting of n design variables, each varying at m discrete levels, the full 

factorial set of experiments to be performed will be mn. For example, if n = 13 and m = 3, a total 

of 1,594,323 experiments will have to be conducted to exhaustively search for the optimum level 

of each design variable at which the performance parameter of the design configuration is at it's 

best (lowest or highest, as the case may be). The Taguchi-based DOE technique makes use of 

orthogonal arrays by which only a fraction of the full factorial set of experiments need to be 

conducted. By analysing the results the most optimum design configuration can be derived. 

An orthogonal array is a matrix of values for the design variables for each experiment. The 

number of rows and columns signify the total number of experiments to be performed and the 

total number of user selected design variables respectively. Each cell value in the matrix signifies 

the level at which a design variable is to be set for an experiment. These values could also be a 

discretization of a continuous design variable. By choosing an appropriate orthogonal array, only 

a fractional of the experiments need to be conducted. In the above example where n=13 and m=3 

an L27 orthogonal array is selected meaning that only 27 experiments have to be conducted as 

opposed to 1,594,323 complete set of experiments. 
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4     Intelligent Multichip Module Analyzer (IMCMA) 

IMCMA is a computer aided design (CAD) tool that uses the powerful technique of finite 

element modeling and analysis to rapidly and automatically assess the design quality of MCMs. It 

is based on a blackboard based system architecture, the basic features of which are shown in 

Figure 3. A blackboard system is characterized by three major characteristics: 

♦ Problem solving is performed by cooperating knowledge sources (KS) which are numeric 

software codes or information sources such as the human being. 

♦ The KSs interact anonymously using a global, shared and structured database called the 

blackboard. 

♦ Problem solving is directed by a flexible control component that is separate from the KSs. 

Signals called events form the interface between the control shell and the blackboard. 

Events trigger KSs. 

IMCMA fully supports object class libraries for MCM devices, device components (substrate, 

well, interconnect lead etc.), and materials. IMCMA begins with the initial state of knowledge of 

MCM provided by the user which consists of a very simple mechanical description of the system. 

Upon completion, the engineer receives from IMCMA the final state of knowledge which is the 

thermo-mechanical performance of the MCM design. 

Conventional finite element codes lack high level, rich representations of designs and 

environments. Domain-specific features such as wells, interconnects, substrate etc. are absent and 

therefore feature-specific design, modeling and analysis knowledge cannot be represented in 

existing finite element codes. The user builds the finite element model using featureless geometric 
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entities and geometric construction techniques. Accordingly, the process of developing the finite 

element model is a time consuming activity. 

When a physical system is represented by a solid model on a computer, the representation is 

only an abstraction of the actual system. This high level representation in the computer that 

contains details that closely defines the physical system is considered to be "rich" in information. 

A finite element model defined in terms of elements, nodes and boundary conditions is termed as 

low level representation. This is because the information comprising the finite element model is 

inherited from the properties of the high level information. Depending on the operation being 

performed on the physical system, different features of the part details are required. Hence, 

without the ability to represent designs and design components at "rich levels of abstraction," it is 

difficult for the finite element codes to reason about the important abstract design and 

manufacturing related knowledge for automation purposes. 

Blackboard Knowledge 

Sources 

Control 

Mechanism 

Figure 3: Blackboard based system architecture 
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The above drawbacks of commercial finite element codes are overcome in EMCMA. The 

entire process of Finite Element Modeling and Analysis (FEMA) is highly automated. The overall 

modeling strategy is a high level, object oriented approach which allows the engineer to develop 

finite element models of MCMs at device or component levels of abstraction. The user does not 

have to deal with the intricacies of geometry definition, material property specification, element 

type selection and mesh generation typically required for a finite element analysis (FEA) using 

commercial finite element packages. Hence, in EMCMA the computer based modeling 

environment occurs at a natural or engineering level of abstraction. To estimate the design quality, 

all the user needs to input into EMCMA is a basic layout representation of the MCM. EMCMA 

automatically converts it into a finite element model, performs analysis and returns the quality of 

the design. The EMCMA system is shown in Figure 4. 

Other advantages of IMCMA are the object libraries and the object connectivity information. 

The object libraries enable the user to model MCMs with different materials and component 

configurations by simply selecting them from the appropriate object libraries. Object connectivity 

facilitates quick data retrieval. Thus, the user does not have to search large static data files or 

even through dynamic blackboard for required information related to the object. 

Explicit representation of object relationships also facilitates finite element modeling and 

analysis efforts. For example, in microelectronic devices interconnects often play a critical role in 

the overall reliability of the device. However, their range, number and minute sizes prohibit their 

inclusion in the large scale finite element model of the device. Lacking super computer resources, 

the engineer must adopt a top down hierarchical modeling strategy in which a small scale finite 

element analysis of a particular interconnect is obtained by a succession of larger scale to smaller 
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scale models, a process called "submodeling" in the FEA community. In effect, the modeling 

strategy represents a mathematical "zooming in" to the critical interconnects. In IMCMA the 

finite element model is represented by element and node objects in the blackboard which have 

relational links to the material, component, and device objects. In this way analysis results (i.e. 

temperature, stress and strain), are associated with high level MCM objects and are thus easily 

transferred as boundary condition information for subsequent submodeling of microfeatures. 

MCM Library 

MCM Component 
Library 

Object 
Classes 

Library Editor 

Physical Idealization 

Finite Element 
Modeling 

Finite Element 
Analysis 

Design Optimization 

Figure 4: The IMCMA system 

5     Integrating DOVE with IMCMA 

The DOVE KSs consist of knowledge sources which perform the appropriate virtual 

experiments and statistical analysis on the performance data, for the given design space. The 

interaction of the design optimization KS with the rest of IMCMA system is schematically 

represented in Figure 5. The DOVE controller controls the execution of the various DOVE KSs 
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and the finite element modeling and analysis KSs. Thus the IMCMA system performs an efficient 

search of the design space and evaluates the performance of candidate MCM designs to obtain a 

robust and near optimal MCM design. 

IMCMA 

DOVE Controller 
/ 

^              w 

4 L.                     \ 

DOVE KSs 

Finite Element 

Modeling 
& 

Analysis KSs 

Robust and 

Near Optimal Design 

GUI: Graphical User Interface 
DOVE: Design of Virtual Experiments 
KSs: Knowledge Sources 

Figure 5: Design optimization KSs within IMCMA system 

The parametric design of the proposed methodology has been completely integrated into the 

IMCMA system. Three different unit classes were defined in the DOVE module to represent the 

various DOVE objects so as to be consistent with the object oriented data representation within 
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IMCMA. Since all the procedural steps in the DOVE module are sequential in nature, simple 

functions are used analogous to knowledge sources. The following sections briefly describes the 

unit classes used in the DOVE module. The various files containing the knowledge 

sources/functions written in Common Lisp are briefly described in appendix B. 

5.1 Unit Classes in DOVE 

The various unit classes in DOVE and brief descriptions of each of them are listed below. 

1. Design-Variable Unit Class 

All the design variable objects belong to this unit class which has the following slots 

defined. 

Component-name - stores name of component that the design variable belongs to 

DV-number - stores the number of the design variable 

DV-attr - stores the attribute of the design variable ie. location-x, size-w etc. 

DV-type - stores whether the design variable is physical or non-physical 

Levels - stores the number of discrete levels 

Level-values - contains a list of values of the design variable at each level 

The dimensional index and the path for this unit class are DV-number and (model 

design-variable) respectively 

2. Orthogonal Array Unit Class 

This version of DOVE has 8 standard orthogonal arrays (OAs). Additional orthogonal 

arrays can be easily added by simply editing the file OAS.LISP. Among the eight OAs, 

five of them are level-2 arrays (viz. L4, L8, L12, L16 and L32) and three are of level-3 

arrays (viz. L9, LI8 and L27). The slots defining each OA are: 
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OA-name - name of the array e.g., L27 

levels - number of levels 

max-factors - maximum number of design variables that the OA can represent 

total-number-of-VEs - total number of virtual experiments 

total-number-of-DVs - total number of design variables defined in the current 

design-space 

array - the matrix of design variable levels for each virtual experiment 

The dimensional indices for this unit class are levels, max-factors and OA-name. 

3.   Design Space Unit Class 

This unit class has been defined to facilitate conducting multiple sets of DOVEs by 

defining unique configuration designs as different instances of the Design Space unit 

class. With minor modifications in this version of DOVE, a series of parametric designs 

can be tested and analyzed for different configurations designs. The different slots in this 

unit class are: 

DS-name - the name of a specific configuration design 

total-DVs - total number of design variables 

number-of-levels - the number of discrete levels of the virtual experimentation 

performance-parameter - the parameter by which the design performance is 

evaluated 

5.2 TheDOFEGUI 

The DOVE GUI has been built using Chalkbox tools which are a standard part of GBB 

version 3.0. The DOVE GUI can be invoked by sequentially clicking on the "FILE" and 
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"RUN-DOVE" buttons of the main IMCMA-GUI. Before invoking the DOVE GUI, a model file 

containing the base configuration of a MCM package should be loaded by sequentially selecting 

"FILE," "OPEN" and then the corresponding file from the main menu of IMCMA-GUI. 

The DOVE GUI first searches the current blackboard database and displays the list of 

components of the current model loaded. Shown below in Figure 6 is a schematic drawing of the 

DOVE-GUI after an example file consisting of 3 chips mounted on a substrate is loaded. A brief 

description of the various GUI buttons follows. 

In this version of DOVE module, the following parameters can be selected as design 

variables. 

♦ Location-x (bottom-left x-location of chip components) 

♦ Location-y (bottom-left y-location of chip components) 

♦ Size-L (length of substrate component) 

♦ Size-W (width of substrate component) 

♦ Size-Z (thickness of substrate component) 

♦ Material properties of component materials 

♦ Materials for components 

Defining a design-variable: The following are sequence of menu buttons to be selected 

when defining a design variable 

♦ Choose component by clicking with the mouse on components listed in upper-left window 

of the DOVE-GUI 

♦ Click on "SELECT" to select the component 
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♦ A window pops up listing parameters of the component that can be chosen as design 

variables. Click on the parameter to select it as a design variable. 

♦ For selected design variable, enter low and high values into appropriate widget 

♦ Click on "OK" to complete the definition of the design variable 

Each design variable successfully defined as above will be represented as shown in right top 

window titled DESIGN-SPACE. Figure 7 pictorially shows the typical steps taken by a user while 

defining a design variable. 

DESIGN OF VIRTUAL EXPERIMENTS (DOVE) 

COMPONENTS      SELECT DESIGN- VARIABLES (D Vs) DESIGNSPACE 

Substrate-1 
Chip-1 
Chip-2 
Chip-3 

ISELECTI 

VIEW BASIC 
CONFIGURATION START DOVE   END DOVE DELETE 

DESIGN-SPACE DELETE-DV 

%VEs completed Current VE = 

Total VEs = 

Figure 6: Schematic drawing of the DOVE GUI 

SELECT After choosing the component to be selected, click here to select the 
component 

VIEW BASIC       Click to view the basic MCM configuration. Consequently, an 
CONFIGURATION inspection of any component can be made by clicking on the 

component in the basic configuration window 

DELETE-DV       After choosing a single design variable (DV), click here to delete it 
from the design-space 

START DOVE      Click here to start the Taguchi-based design of virtual experiments. 
To be done after all the desired design variables have been defined 
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END DOVE        Click here to exit the design of virtual experiments module 

DELETE Click here to completely erase the design-space and start a new set of 
DESIGN SPACE    design space definition 

% VEs Completed   Displays percentage completion of virtual experiments 

Current VE =       Displays current virtual experiment being performed 

Total VEs = Displays total number of virtual experiments 

The sequential steps of DOVE are as follows. 

♦ User selects design variables and their values at each level to form the design space using a 

Graphical User Interface (GUI). 

♦ An appropriate orthogonal array that closely maps onto the design space is selected from 

the list of arrays in the database. 

♦ The parameters of components corresponding to each design variable are updated based 

on the cell values of the selected orthogonal array for the current virtual experiment. 

♦ After updating all component parameters, the new MCM package design configuration is 

modeled and analyzed by the various finite element based knowledge sources. 

♦ From the results of the numerical simulation, the complete mesh geometry data and the 

maximum nodal temperature are saved before the next experiment starts. 

♦ Steps 3, 4 and 5 are repeated for all the experiments. 

♦ After completing all virtual experiments, a statistical analysis is performed on the list of 

performance parameter values (maximum nodal temperature). 
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♦ The results of the statistical analysis are graphically represented in the form of pie-, bar- 

and xy graphs and are also written out in ASCII format into a file with the extension 

".dove." 

♦ The "mean level" of a design parameter at a particular level is evaluated by averaging the 

performance parameter values of all virtual experiments having the design parameter value 

set at that particular level. From all these mean levels, the optimum design configuration is 

predicted. This optimum design configuration may or may not be the same as one of the 

experiments already performed. Hence, if necessary, a confirmation test is performed to 

compare the performance parameter with the predicted value. 

In the current version of DOVE only 2 level orthogonal arrays are used and hence only a low 

and a high value for each design variable are to be entered. Secondly, only main effects of design 

variables are considered. All interaction effects are confounded with the main effects, and thus 

assumed to be insignificant. 

For the example file mentioned earlier, and the design space defined as shown in Figure 7, 

the postprocessing results of DOVE are graphically represented as shown in Figure 8. The first 

plot is a pie graph of percent contributions of each design variable to the performance parameter. 

The second is a table of the user-defined design space. The third plot is a bar graph of 

performance parameter versus virtual experiment number and the fourth plot is an xy graph of the 

mean levels versus the levels of each design variable. This plot represents the sensitivity of 

performance parameter to the design variable level values. 
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Substrate-1 

Chip-1 

Chip-2\ 

Chip-3 

Component 
, selection 

Material 
SIZE-L 
SIZE-W 
SIZE-H 

Location-x 
Location-y 
Material 

Parameter 
selection 

Hcieht-L       0.9 

Hci2ht-H       1.2 

X-L 4.5 

X-H 9.0 

Assigning low 
and high values 

DESIGNSPACE 

DV-l::Substrate-l:Size-H::(0.9,1.2) 

PV-2:: Chip-1 :Location-X:: (4.5,9.0) 

DV-3::Chip-3:Location-X::(6.0,12.0) 

Description of selected design variables 
placed on design space 

Figure 7: Schematic flowchart showing the steps for defining design variables 
for an example MCM package using DOVE GUI. 
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Figure 8: The postprocessing results of the design of virtual experiments for 
a simple example MCM 
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6     Validation of DOVE 

The supporting arguments made in Section 5 for rapid design assessment of MCM packages 

by using the DOVE methodology are validated by conducting two separate sets of experiments. 

One set consists of a full factorial set of experiments and the other a fractional factorial set. The 

fractional factorial set is formed by mapping an appropriate orthogonal array onto the selected 

design space. The maximum temperature in the MCM is chosen to be the performance parameter. 

It is to be noted that all interactions between the design variables are confounded with the main 

effects, and consequently, only main effects are investigated. An example MCM package very 

similar to the one shown in Figure 9 was chosen to demonstrate and validate the DOVE 

methodology with the only difference being the placement of chips. For the validation example, 

the chips were mounted on top of the substrate, and the thermal flux entering the system via chips 

seven and three was increased. 

6.1 Examples 

Only the macro model of the MCM package is chosen for validation. No interconnects, 

adhesive layers and other micro-components were included in the model. Two sets of design 

spaces, one with three design variables and the other with seven design variables, were selected as 

shown in Table 1. 

In Set I that has three design variables, a full factorial set will have a total of 8 (23) 

experiments. This set is an exhaustive combination of all possible values for each design variable. 

By the technique of Taguchi based design of experiments, an L4 orthogonal array is selected to 

represent only main effects of the design variables. With this L4 array, only four experiments need 
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to be performed.  The maximum temperature in the MCM package was selected as the 

performance parameter of the MCM package designs. 

For the design space Set II which has seven design variables, an L8 orthogonal array is 

automatically mapped onto the design space resulting in just 8 experiments by the fractional 

factorial method. This is in sharp contrast to a total of 128 (27) experiments by the full factorial 

method. 

Table 1: DESIGN SPACE SETS I AND II FOR THE VALIDATION EXAMPLES 

DV-# Component Attribute Level-1 LeveI-2 

Set I 
DV-1 Substrate-1 Size-H 1.2 1.5 

DV-2 Chip-7 Location-X 2 33 

DV-3 Chip-3 Location-Y 8.5 14 

SetH 

DV-1 Substrate-1 Size-H 1.2 1.5 

DV-2 Chip-1 Location-X 17.62 25.62 

DV-3 Chip-2 Location-Y 21.81 32.64 

DV-4 Chip-3 Location-Y 8.35 14.46 

DV-5 Chip-7 Location-X 2 33 

DV-6 Chip-8 Location-X 23.1 25 

DV-7 Chip-10 Location-X 23 27.3 

6.2 Results 

The results of validation of the DOVE methodology are tabulated in Tables 2 and 3. The 

economical and effective MCM design evaluations using the DOVE can be clearly inferred from 

these results. 

Referring to Table 2, with only three design variables (Set I) there is a reduction of 50% in 

the total number of experiments and consequently a same amount of reduction in the computation 

time. It is to be noted that with the fractional factorial experimentation the predicted optimum 
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design configuration is the same as obtained as a result of a full factorial experimentation. Due to 

the optimum design configuration being the same from both the methods, the optimum 

performance parameter (maximum temperature in the MCM) will also coincide. The predicted 

maximum temperature is very close to the confirmation value and the small difference between 

them is attributed to the prediction algorithm that is based on only a fraction of the total number 

of experiments 

Table 3 clearly shows an excellent convergence of the optimum MCM design configuration 

with only a fraction of the experiments being performed. It is to be noted that with a 94% 

reduction in the total computational time (using the fractional factorial method), the results of the 

statistical analysis very closely coincides with a full factorial set of experiments. By performing 

statistical analysis on the results of the two experimentations, the predicted optimum MCM design 

configuration were (1112211) and (1122212) from the full factorial and fractional factorial 

experiments respectively. At first glance, it may appear that the two optimum configuration level 

values are different for design variables three and seven. But looking at the percent contributions 

of these two design variables (0.01% and 0.03%) towards the performance parameter, they 

clearly have little or no effect on the performance parameter and hence the two predicted 

optimum configurations are essentially the same. 

From Table 3, the most important conclusion is that for this particular design space, only 6% 

of the complete set of experiments needs to be sampled to predict the optimum performance 

parameter and design configuration. 
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It is to be noted that the total percent variation in the performance parameter is only around 

11%, which may not be significant especially in view of uncertainty in material properties, 

boundary conditions, etc. 

Table 2: COMPARISON OF RESULTS OF FULL AND FRACTIONAL FACTORIAL 
RIMENTAT ION WITH 3 DESIGN VARIABLI iS (DESIGN SPACE I 

Full Factorial 
Experimentation 

Fractional Factorial 
Experimentation 

Number of Experiments 23 =8 4 (L4 array) 

Optimum Performance 
Parameter (Tmax) 

43.08°C Predicted = 43.03°C 
Confirmed = 43.08°C 

Optimum Configuration 
(Level of each DV) 

(12 2) (12 2) 
predicted 

Total computational 
time 

32 minutes 16 minutes 
(50% Reduction) 

Percent Contributions 

DV-1 34.42 35.61 

DV-2 64.92 64.12 

DV-3 0.48 0.27 

Mean Levels 

Level-1 DV-1 44.56 44.53 

DV-2 47.01 46.91 

DV-3 45.71 45.13 

Level-2 DV-1 46.61 46.55 

DV-2 44.18 44.18 

DV-3 45.57 45.45 

The following section demonstrates the step by step procedure of the proposed methodology 

discussed in Section 3.2 for an example MCM package design. 
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Table 3: COMPARISON OF RESULTS OF FULL AND FRACTIONAL FACTORIAL 
EXPERIMENTATION WITH 7 DESIGN VARIABLES (DESIGN SPACE SET II) 

Full Factorial 
Experimentation 

Fractional Factorial 
Experimentation 

Number of Experiments 27 = 128 8 (L8 array) 

Optimum Performance 
Parameter (Tmax) 

43.80°C Predicted =43.64°C 
Confirmed = 43.82°C 

Optimum Configuration 
(Level of each DV) 

(1112211) (112 2 2 12) 
predicted 

Total computational 
time 

616 minutes 39 minutes 
(94% Reduction) 

Percent Contributions 

DV-1 50.33 51.41 

DV-2 0.32 0.3 

DV-3 0.01 0.07 

DV-4 1.28 1 

DV-5 47.37 46.71 

DV-6 0.06 0.07 

DV-7 0.03 0.31 

Mean Levels 

Level-1 DV-1 44.99 45.02 

DV-2 45.92 45.97 

DV-3 46.04 46.05 

DV-4 46.14 46.22 

DV-5 46.96 47.06 

DV-6 45.95 46.05 

DV-7 46.08 46.05 

Level-2 DV-1 47.01 47.09 

DV-2 46.08 46.13 

DV-3 45.95 46.05 

DV-4 45.86 45.89 

DV-5 45.04 45.05 

DV-6 46.04 46.05 

DV-7 45.92 46.05 
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7     An example MCM package design 

The design problem chosen was to find an optimal, robust and tolerant MCM design based on 

a design space for each of the design parameters. With the performance parameter chosen to be 

the maximum temperature in the MCM, the optimal design would be the one with the lowest 

maximum temperature. The design variable space is evaluated at three levels, thus allowing for 

analysis of any second order effects in the behavior of the maximum MCM temperature within the 

ranges of the MCM design parameters chosen. To demonstrate the above application a simple 

MCM model with ten wells on a substrate was chosen as shown in Figure 9. 

This MCM is similar to the RELTECH3 test vehicle. Two major assumptions made are: i) the 

volume of each well is completely filled with chips in it, and ii) all the chips in a well are modeled 

as a single chip. The x-y centroidal coordinates of substrate, well components, their lengths, their 

widths and depths are given in Table 4. The origin of the x-y coordinate system is at the lower left 

hand corner of the substrate. The boundary conditions applied are also shown in Figure 9. 

Thermal analyses were performed (using finite element simulations) to determine the value of the 

performance parameter (maximum temperature) for each virtual experiment. 

The modeling simplification parameters investigated in this example are the XY-adjust and 

Z-adjust for finite element meshing. These parameters allow the well dimensions to change 

slightly to facilitate automatic mesh generation and to significantly reduce the total degrees of 

freedom (DOF), thereby reducing the computational time. The design parameters of the MCM 

model chosen and their respective levels   are shown in Table 5. The modeling simplification 

3    RELTECH is a Department of Defense (DOD) and NASA program funded by Advanced 
Research Project Agency (ARPA). The objective of RELTECH is to select MCM technologies 
with high DOD, NASA and commercial usage and to verify their performance and reliability. 
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parameters and their respective levels are shown in Table 6. Corresponding to the thirteen design 

parameters with three levels each, a standard L27 Taguchi orthogonal array was chosen as the 

inner array. The two modeling simplification parameters at two levels each are represented in an 

L4 outer array. 

5 
2                      @ 

9 

6 

4 
8 

3 1 

D 
Figure 9: Layout of the example MCM model (10 wells on substrate) 

Flux on top surface of all chips except in well-7, q = 1.0 W per well 
Flux on top surface of chips in well-7, q = 2.0 W per well 
Prescribed temperature on all side surfaces of substrate, T = 35 °F 

Table 4: LOCATIONS AND DIMENSIONS (IN MM) OF SUBSTRATE AND WELLS 

Component Xc Yc 
L W D 

Substrate 20.32 20.32 40.64 40.64 1.27 

Well-1 30.47 12.2 13 5.99 0.52 

Well-2 18.48 31.93 6 6 0.52 

Well-3 10.36 11.88 12.99 5.99 0.52 

Well-4 9.27 24.81 6 6 0.52 

Well-5 9.5 31.93 7.24 7.24 0.67 

Well-6 34.02 28.76 6.71 16.78 0.43 

Well-7 8 4.69 4.91 4.62 0.36 

Well-8 28.14 22.75 3.85 4.95 0.48 

Well-9 25.33 30.01 3.42 5.12 0.26 

Well-10 28.4 35.03 2.01 2.85 0.57 
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Table 5: DESIGN PARAMETERS AND THEIR LEVELS (DIMENSIONS IN MM) 

Level 1 Level 2 Level 3 

Substrate Material (SM) Cu-AIN 
K = 0.15W/mm°C 
CTE = 2.7 ppm/°C 

Cu-Mo-Cu 
K = 0.17W/mm°C 
CTE = 7.5 ppm/°C 

SiC-BN 
K = 0.20 W/mm°C 
CTE = 4.0 ppm/°C 

Chip Material (CM) GaAs 
K = 0.05 W/mm°C 
CTE = 5.7 ppm/°C 

Ge 
K = 0.07 W/mm°C 
CTE = 6.0 ppm/°C 

Si 
K = 0.13W/mm°C 
CTE = 2.3 ppm/°C 

Substrate thickness (ST) 1.02 1.27 1.52 

Location of well-1 (Wl) 24.12, 12.20 28.17,12.20 32.14,12.20 

Location of well-2 (W2) 18.48, 24.81 18.48, 30.23 18.48, 35.64 

Location of well-3 (W3) 10.36, 11.35 10.36, 14.41 10.36, 17.46 

Location of well-4 (W4) 5.00, 24.81 8.07, 24.81 11.13,24.81 

Location of well-5 (W5) 5.62,31.93 8.07,31.93 10.51,31.93 

Location of well-6 (W6) 34.02, 24.00 34.02,27.13 34.02, 30.25 

Location of well-7 (W7) 4.46, 4.69 20.32, 4.69 36.19,4.69 

Location of well-8 (W8) 25.00, 22.75 26.16,22.75 27.32, 22.75 

Location of well-9 (W9) 24.00, 30.01 25.70, 30.01 27.62, 30.01 

Location of well-10 (W10) 24.00, 35.03 26.16,35.03 28.32, 35.03 

Table 6: MODELING SIMPLIFICATION PARAMETERS AND THEIR LEVELS 
(DIMENSIONS IN MM) 

Modeling 
simplification 

factors Level 1 Level 2 

XY-adjust 0 1 

Z-adjust 0.06 0.11 

First, the parametric design is performed. For this purpose each of the 27 virtual experiments 

(corresponding to the L27 inner array of design parameters) was run four times with different 

values of modeling simplification parameters set by the L4 outer array and the values of robust 

modeling simplification parameters are determined. Next, a screening is done based on the percent 
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contributions of design parameters at the end of the parametric design step resulting a reduced set 

of four design parameters . Finally, a tolerance design is performed on the reduced set of design 

parameters using a three level L9 inner array to represent the design parameters, and a two level 

L4 outer array to represent the tolerances on them. Thus, a tolerant, near-optimal and robust 

design is obtained. 

8 Results 

The results of the virtual experiments and the subsequent statistical analysis performed on 

these results are tabulated in Tables 7, 8 and 9. Table 7 shows the results of the parametric design, 

Table 8 shows the reduction in the finite element degrees of freedom (which directly correlates 

with computation time) due to the robust modeling parameters selected by parametric design and 

Table 9 shows the results of the tolerance design. 

The four columns of results in Table 7 denoted by Max Temp, represent the variation in the 

maximum MCM temperature in each virtual experiment due to variations in modeling 

simplification parameters. The %var column represents the percent variation in the maximum 

temperature due to changes in the modeling simplification parameters from one level to the other. 

The formulas used for computing these variances are presented in the appendix. It can be seen 

that the variance in maximum temperature due to changes in the modeling simplification 

parameter values is negligible. With XY-adjust changing from 0.0 to 1.0 the percent variation in 

the performance parameter, %var(xy) is 0.31 and for a change in Z-adjust from 0.055 to 0.110 

produced a percent variation (%var(z)) of only 0.20 in the performance parameter. This clearly 

shows that the chosen values of the modeling simplification parameters have little or no significant 

effect on the finite element solution. Hence, the modeling simplification parameters could be 
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chosen at any desired level within the ranges tested above. Hence, XY-adjust and Z-adjust were 

both selected at level 2, i.e., XY-adjust = 1mm and Z-adjust = 0.11mm. This selection was made 

with an important purpose of minimizing the computational time during the finite element 

analysis. From Table 7 the column corresponding to the above values of modeling simplification 

parameters is the virtual experiment set b. This was now chosen as the performance parameter 

values for a standard Taguchi statistical analysis. 

Table 8 clearly shows the effect of changes in the modeling simplification parameters (viz. 

XY-adjust and Z-adjust) to the finite element modeling in terms of total degrees of freedom which 

directly correlate to the number of equations to be solved and hence the computational time 

required for the finite element analysis. The reduction in the finite element total degrees of 

freedom (computed by comparing the chosen virtual experiment set (viz. b) and the set with the 

highest value (viz. set a)), was found to be ranging from 67% to 83% which amounts to a 

significant reduction in computation time. 

The optimum levels of the design parameters and their percent contributions were computed 

and are shown in Table 7. The optimum levels for each MCM design parameter are in the row 

labeled opt. An optimum maximum MCM temperature based on the optimum levels of design 

parameters was predicted using a prediction formula given by the Taguchi method and was 

evaluated to be 36.84° F. The optimum temperature obtained on performing a verification 

experiment setting the design parameter levels at their optimum levels was 38.5° F which is quite 

close to the predicted value. The percent contributions of the design parameters are shown in 

figure 10. The reduction of the design space is now done based on the percent contributions 

obtained in the previous step. Figure 10 shows that substrate thickness (ST)  has the maximum 
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contribution of 47.01%, followed by substrate material (SM) having 24.31%, chip material (CM) 

having 11.2% and Well 2 (W2) of 5.36%. These are the most significant design factors among the 

set that was explored and hence are chosen as the design parameters for the next step for 

tolerance design. During the tolerance design, the levels of all the other less significant factors 

were fixed at the optimum levels obtained from parametric design. 

Tolerance design was carried out with tolerances on the substrate thickness and substrate and 

chip material properties (ST, SM and CM). The tolerances specified were as follows: 

ST: ±2% 
SM:±10% 

CM: ±10% 

A low tolerance was placed on the substrate thickness since the manufacturing process for 

substrates can be controlled to tight and accurate specifications while the material properties of 

substrate and chip materials cannot be determined as accurately. Hence, a tighter tolerance was 

specified on material properties viz. SM and CM while a relatively loose tolerance was specified 

on the substrate thickness. 

These were represented in an L4 outer array and the design parameters (ST, SM, CM and W2) 

were represented in a L9 three level inner array. The results of the tolerance design are shown in 

Table 9. The Taguchi statistical analysis was carried out on the virtual experimentation results 

(viz. maximum MCM temperature) for determining the levels of design parameters at which both 

the mean and the variance are reduced. For this purpose a modified signal to noise ratio (see 

appendix) is used. Based on these values a prediction using the Taguchi prediction formula is 

performed to predict a design that would have both minimum variation and mean. Using the signal 

to noise ratio as the performance parameters, the predicted optimum value was evaluated to be 

0.12 and the obtained optimum signal to noise ratio was found to be 0.15. The optimum levels for 
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the design parameters are as shown in the row labeled opt. Additional information available from 

this analysis is the sensitivity of the maximum MCM temperature to the tolerances on the design 

parameters. 

W10 (2.04%) 
W9 (0.94%) 

W8 (3.21%) 
W7(0.11%) 

W6 (2.44%) 
W5 

W4 
W3 

W2 (5.36 

Wl (2.04% 

SM (24.31%) 

Figure 10: Percent contributions of MCM design parameters to 

the maximum MCM temperature 
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Table 7: RESULTS OF PARAMETRIC DESIGN ON THE MCM EXAMPLE 

Virtual Experiments (VE): FE simulations (thermal analysis) 
Orthogonal inner array chosen: L27 (3 levels) - 13 MCM design-parameters 
Orthogonal outer array chosen: L4 (2 levels) - 2 modeling parameters 
Performance parameter: Maximum Temperature 
Performance characteristic: Lower is better  

1 2 3 4 5 « 7 8 9 10 11 12 13 %VAR  | 

Design Factors > 

1 1 2 2 
XY-a 0 1 0 1 0.31 
Z-a 0.055 0.11 0.11 0.055 0.20 

VF# | a b c d 
CM SM ST Wl W2 W3 W4 W5 W6 W7 W8 W9 W10 Max. Temp.(F  > 

1 1 1 1 1 1 1 1 1 1 1 1 1 44.24 45.01 44.12 45.14 
2 1 1 1 2 2 2 2 2 2 2 2 2 44.27 43.54 44.25 43.57 
3 1 1 1 3 3 3 3 3 3 3 3 3 43.56 43.26 43.71 43.38 
4 2 2 2 1 1 1 2 2 2 3 3 3 41.61 41.51 41.53 41.58 
5 2 2 2 2 2 2 3 3 3 1 1 1 41.64 41.94 41.76 42.04 
6 2 2 2 3 3 3 1 1 1 2 2 2 41.15 40.85 41.10 40.86 
7 3 3 3 1 1 1 3 3 3 2 2 2 39.84 38.90 39.77 38.97 
8 3 3 3 2 2 2 1 1 1 3 3 3 39.60 39.63 39.54 39.70 
9 3 3 3 3 3 3 2 2 2 1 1 1 39.82 40.15 39.76 40.24 
10 2 1 2 3 1 2 3 1 2 3 1 2 3 42.22 42.05 42.16 42.11 
11 2 1 2 3 2 3 1 2 3 1 2 3 1 41.43 41.20 41.45 41.18 
12 2 1 2 3 3 1 2 3 1 2 3 1 2 41.74 41.67 41.65 41.76 
13 2 2 3 1 1 2 3 2 3 1 3 1 2 40.26 40.34 40.29 40.41 
14 2 2 3 1 2 3 1 3 1 2 1 2 3 40.61 40.21 40.55 40.25 
15 2 2 3 1 3 1 2 1 2 3 2 3 1 40.10 39.54 40.03 39.52 
16 2 3 1 2 1 2 3 3 1 2 2 3 1 42.70 42.24 42.59 42.38 
17 2 3 1 2 2 3 1 1 2 3 3 1 2 41.56 41.33 41.57 41.43 
18 2 3 1 2 3 1 2 2 3 1 1 2 3 41.2JL 40.66 41.11 40.72 
19 3 1 3 2 1 3 2 1 3 2 1 3 2 40.66 40.57 40.64 40.59 
20 3 1 3 2 2 1 3 2 1 3 2 1 3 40.49 40.38 40.49 40.38 
21 3 1 3 2 3 2 1 3 2 1 3 2 1 39.85 39.83 39.85 39.85 
22 3 2 1 3 1 3 2 2 1 3 3 2 1 42.65 42.00 42.03 42.84 
23 3 2 1 3 2 1 3 3 2 1 1 3 2 41.92 41.89 41.88 41.93 
24 3 2 1 3 3 2 1 1 3 2 2 1 3 41.45 40.14 41.47 41.14 
25 3 3 2 1 1 3 2 3 2 1 2 1 3 40.18 40.10 40.21 40.14 
26 3 3 2 1 2 1 3 1 3 2 3 2 1 40.05 40.11 40.08 40.10 
27 3 3 2 1 3 2 1 2 1 3 1 3 2 39.68 39.77 39.64 39.80 

AVG 41.28 41.07 41.23 41.19 
Optimum Levels of MCM DPs (using marginal means): 

lopt   |3|3|3|3|3|l|l|l|3|3|2|2|3| 
Predicted Optimum Max. Temperature = 36.84F 
Verified Optimum Max. Temperature = 38.50F 
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Table 8: COMPARISON OF FINITE ELEMENT TOTAL DEGREES OF FREEDOM 

DOF — —> 
ve# a b c d %Reductioi 

1 2067 396 1080 762 80.84 

2 2318 390 1200 768 83.18 

3 2184 462 1140 909 78.85 

4 2087 540 1080 1054 74.13 

5 2299 546 1200 1061 76.25 

6 2272 462 1200 903 79.67 

7 2082 504 1080 986 75.79 

8 2288 540 1200 1045 76.40 

9 2314 468 1200 917 79.78 

10 2088 672 1080 1296 67.82 

11 2292 495 1200 978 78.40 

12 2340 495 1200 979 78.85 

13 2092 588 1080 1140 71.89 

14 2298 390 1200 773 83.03 

15 2308 576 1200 1132 75.04 

16 2078 585 1080 1132 71.85 

17 2256 462 1200 896 79.52 

18 2191 429 1140 841 80.42 

19 2066 576 1080 1122 72.12 

20 2312 450 1200 885 80.54 

21 2274 630 1200 1211 72.30 

22 2074 429 1080 844 79.32 

23 2314 495 1200 985 78.61 

24 2203 585 1200 1140 73.45 

25 2064 540 1080 1058 73.84 

26 2318 462 1200 914 80.07 

27 2316 585 1200 1135 74.74 

ve#: virtual experiment due to MCM design parameter 
DOF: Finite Element Degrees of Freedom 
a: for XY-adjust = 0.0mm and Z-adjust = 0.055mm 
b: for XY-adjust = 1.0mm and Z-adjust = 0.110mm 
c: for XY-adjust = 0.0mm and Z-adjust = 0.11mm 
d: for XY-adjust = 1.0mm and Z-adjust = 0.055mm 
%Reduction: percent reduction in DOF = ((Max(a,c,d) - b)/Max(a,c,d))*100 
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Table 9: TOLERANCE DESIGN ON REDUCED MCM DESIGN SET 

Virtual Experiments (VE): FE simulations, thermal analysis 
Orthogonal inner array chosen: L9 (3 levels) - 4 MCM design-parameters 
Orthogonal outer array chosen: L4 (2 levels) - 3 tolerance parameters 
Performance parameter: Maximum Temperature 
Performance characteristic: Lower is better   

1 i      1 

Design F 

2        1 3        1 4 

actors — 

%tol(ST) -2% +2% +2% -2% 

%toI(SM) -10% +10% -10% +10% 

%tol(CM) -10% -10% +10% +10% 

VE# a b 
r<>mn (V\ 

c d 

1 
CM 

1 
SM 

1 
ST 

1 
W2 

1 
— IV1HX. 

44.34 42.62 43.67 42.65 

2 1 2 2 2 41.57 40.41 41.09 40.37 

3 1 3 3 3 39.72 38.95 39.35 38.86 

4 2 1 2 3 41.63 40.44 41.17 40.43 

5 2 2 3 1 40.57 39.59 40.18 39.56 

6 2 3 1 2 41.82 40.58 41.32 40.58 

7 3 1 3 2 40.42 39.86 40.10 39.43 

8 3 2 1 3 41.71 40.41 41.26 40.49 

9 3 3 2 1 40.15 39.20 39.81 39.22 

opt 3 3 3 3 opt-run 38.89 38.18 38.75 38.3 

av2(1..9) 41.33 40.23 40.88 40.18 

Statistical Analysis on DVs: 

opt |      3      I      3      I      3      |      3 

Predicted OPT-Ratio: 0.12 
Verified OPT-Ratio: 0.15 
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These sensitivity values are obtained by taking the mean values for each column of results 

labeled a, b, c and d and performing a standard Taguchi statistical analysis treating these mean 

values as outputs of the four virtual experiments of the L4 outer array. The percent contributions 

of the pruned MCM design parameters and those due to the tolerances on them are shown in 

Figure 11. 

From this figure it can be clearly seen that while the maximum MCM temperature is very 

sensitive to the values of substrate thickness (ST) (65%), it is most sensitive to the tolerances on 

substrate material (SM) (89%) rather than the tolerances on substrate thickness (ST) (6%). A 

mesh plot of the near-optimal and tolerant design obtained is shown in Figure 12. The left bottom 

part of Figure 12 shows the finite element mesh plot of the MCM with the top surface 

temperature of the elements in color (red denotes hottest region). The optimum maximum MCM 

temperature obtained was 38.18°F with the finite element mesh having only 495 total degrees of 

freedom. 

In summary, at the end of the three step procedure we can draw the following conclusions for 

this specific test case MCM design space: 

1. For near-optimal, tolerant design the levels of design parameters are: 

SM, CM, ST, Wl, W2, W6, W7, W10 all at Level-3 

W3, W8, W9 all at Level-2 and W4, W5 at Level-1 

2. Robust modeling simplification parameter values are: 

XY-adjust: 1.0 mm, Z-adjust 0.11mm 

3. Significant reduction in computation time using above modeling simplification 

parameter values (77%) 
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4.   Maximum MCM temperature is most sensitive to the substrate thickness (ST) and 

tolerances on substrate material (SM). 

100 

MCM-DP 

Tolerance on MCM-DP 

DP: Design Parameter 

um 
mm 

CM SM ST 
Significant MCM Design Parameter 

W2 

Figure 11: Percent contributions of sensitive MCM design parameter values 

and their tolerances. 
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Figure 12: Finite element mesh plot of the optimum MCM package design. 
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9 Conclusions 

The above example demonstrates an application of the proposed methodology for an MCM 

design. An efficient methodology for robust modeling and tolerance design has been developed 

using a DOE technique. This methodology enables a rapid and efficient pruning of the design 

space and the identification of significant design factors affecting the performance. It also 

facilitates robust modeling by judicious selection of modeling simplification parameters which also 

directly affect the speed of finite element simulations. Finally, the proposed methodology allows 

the designer to investigate the effect of design parameter tolerances on the performance of the 

design. 

The proposed methodology can also be applied to microfeatures of MCMs, such as 

interconnects, die features, etc. by "zooming in" from a macroscopic model to a microscopic 

model in a sequential multistep analysis procedure called finite element submodeling. Ongoing 

research is focused on this area [4]. 

10 Limitations and Future Extensions 

At present, the user is allowed to choose only 2 levels for each design variable, thereby 

accounting for only a linear behavior of the performance parameter with respect to the DV. The 

DOVE code can be easily modified to include a 3 level input for each DV so that a quadratic 

behavior, if any, can be investigated. 

In the present version of DOVE, only the main effects of the design variables are 

investigated. No interactions among them are considered. The existing code can be easily 

extended to include interactions of the first and second order. 
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Since the design of experiments technique performs design evaluations at discrete levels 

defined by the user a near-optimal solution is obtained. For a global-optimal solution, the user is 

advised to use any of the standard classical optimization tools available in the market. The 

architecture of IMCMA is well suited for easily integrating other software tools into EMCMA. 
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Appendix A 

The formulas for evaluation of variation in the performance parameter due to different values 

of modeling simplifications (%var) and the modified signal to noise (S/N) ratio used for 

identification of robust designs are presented in this appendix. 

Let veyj represent the performance parameter values corresponding to the /'* virtual 

experiment (i.e. simulation) and ve (e.g.. a, b, c, din Table 10) represent the repetitions of the 

virtual experiment for different combinations of modeling simplification parameters represented by 

the outer array. The percent variance in the performance parameter values due to the change in 

levels of each modeling parameter (%var) is computed as follows. 

%var 
Vf=1 y level\ ^=l J level! 

Niy 
xlOO [1] 

where. 

2 S "y, 
V(=l k=\ J 

/(NiNo) [2] 

y = mean of all performance parameter values 
Nt = number of experiments in the inner array 
N0 = number of experiments in the outer array 

For the parametric design presented in this report (as shown in Table 10), the modeling 

simplification parameters are XY-adjust (xy) and Z-adjust (z) with ni = 27 and no = 4. Thus, 

%var(xy) 

27 27 27 

1=1 i=l        J    \i=\ ;=1 
27^ x 100 

=   0.31 
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Similarly, 

%var(z) 

111 27 
Z -J-I+Z ^ 

Vi=l ;=1 

'27 27        ^ 
Z   ^/+Z  ">, 

.1=1 ;=1       ) 
lly 

xlOO 

=   0.20 

Modified signal to noise ratio: The Taguchi signal to noise ratios have met with 

considerable criticism and have been found to confound the mean and the variation effects in the 

performance parameter [10]. In our observations we found that the Taguchi lower is better S/N 

ratio was successful in only identifying designs with lower mean performance parameter values 

irrespective of variations in them. Hence, in order to identify designs with lower mean as well as 

variation in performance parameter values, a modified signal to noise ratio was formulated. The 

modified signal to noise ratio that minimizes the mean and the variation in the performance 

parameter is given by: 

MOD(SIN) = - \0LOG 

N° 
Z(y,-V%)2 

1=1 

^ 

No 

vyt 

Min {(^&}M 
[3] 

where the mean of the ith virtual experiment across modeling simplifications are given as: 

vJi = t kyt [4] 
k=\ 

InEq. [3], 
Z>,-^,)2 

;=1 
ver-, \2 

No 
quantifies the variation in performance parameter for different 

values of the parameters in outer array while y> 
Min {eyf^Z i=l 

is a penalty factor that 

penalizes a design based on its mean performance parameter value. The penalty factor is a ratio of 

the mean performance parameter for a design and the minimum performance parameter value in 
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the complete set of virtual experiments performed. In this manner the MOD(S/N) ratio could be 

used to identify designs that have a low mean performance parameter value as well as a low 

variation in the performance parameter value across the outer array. 

The Taguchi lower is better S/N ratio is given by 

TAG{SIN) = - \QLOG[I Q [5] 

From the above expression it is clear that by using this S/N ratio the design with the lowest 

mean performance parameter value will be selected, irrespective of the variance in this value 

across the outer array. The above argument is clearly demonstrated in the example presented in 

Table 7. The table shows the performance parameter values for a virtual experiment set consisting 

of an L8 inner array and an L4 outer array. Using the Taguchi lower is better S/N ratio the design 

corresponding to virtual experiment 8 would be chosen as the robust design as it has the 

maximum S/N value of-37.52 dB, while, by using the modified S/N ratio MOD(S/N), the design 

corresponding to virtual experiment 7, which has the maximum S/N ratio value (-0.24 dB) would 

be chosen as the robust design. The design chosen by the Taguchi S/N ratio has the minimum 

mean temperature 74.99 °F (which was expected) and a variance of 126.02. The design chosen by 

using the modified S/N ratio has a mean temperature of 76.24°F which is slightly higher than the 

former but has a very low variance of 19.40. Thus using the modified S/N ratio a robust design 

having both low mean and low variance in performance was obtained. Using the modified S/N 

ratio, it is not necessary that designs with the lowest mean or lowest variance will be selected. 
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Table 10: EXAMPLE COMPARING TAGUCHI S/N AND MODIFIED S/N RATIOS 

Orthogonal Inner Array: L8 
Orthogonal Outer Array: L4 

L4 Outer Array 

Performance Parameter — 
VE a b c d Tagucbi(S/N) Avg Variance Mod(S/N) 

L8 

I      A 
n      r 
n     r 
e      a 

*   y 

1 77.05 92.08 78.17 70.50 -38.04 79.45 247.02 -5.95 
2 74.32 89.62 65.81 91.08 -38.16 80.21 448.75 -7.29 
3 72.47 83.08 73.26 95.14 -38.22 80.99 336.82 -6.70 
4 82.27 80.55 88.44 73.42 -38.21 81.17 114.49 -4.37 
5 88.35 80.24 88.54 61.17 -38.10 79.58 496.50 -7.47 
6 85.63 88.05 91.02 89.32 -38.94 88.51 15.49 -0.40 
7 75.38 74.10 79.93 75.56 -37.65 76.24 19.40 -0.24 
8 74.38 67.10 82.93 75.56 •37.52 74.99 126.02 -4.24 

MIN -38.94 74.99 15.49 -7.47 
MAX -37.52 88.51 496.50 -0.24 
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Appendix B 

The following are a list of files and functions that comprise the DOVE module with brief 

descriptions of each of them. 

1. oas.lisp: contains 8 orthogonal array instances, 5 of which are of level 2 and 3 of level 3. 

2. dove-run-imcma. lisp: contains functions to run the physical idealization and finite element 

modeling and analysis KSs. 

3. de fine-design-space, lisp: contains all the DOVE GUI functions to bring up the menus 

and take input from the USER. 

4. design-of-VEs.lisp: this file contains all the functions to perform various DOVE tasks. 

Some of the important functions are described below. 

a) dove-control-shell-fiinction: controls the looping of the entire FEMA process 

b) ds-oa-map-function: maps an appropriate orthogonal array that closely fits the user 

specified design space 

c) dv-component-update-function: updates the appropriate slot value for the 

corresponding component for the current design variable 

d) pp-update-function: updates the performance parameter value of the current virtual 

experiment inside the chosen orthogonal array 

e) stat-analysis-function: performs the statistical analysis of the experiments and predicts 

the optimum design configuration based on the mean levels of each design variable 

f) virite-out-dove-results: writes out the user specified design space and the results of the 

statistical analysis 
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g) read-dove-results: reads the DOVE results onto a blackboard from an existing 

".dove" file 

All the above functions can easily be modified to work as knowledge sources (KSs). Since, 

currently the execution of various steps of the DOVE methodology are clearly sequential in 

nature, there is no real necessity for the above functions to perform as KSs. 

«U.S. GOVERNMENT PRINTING OFFICE:     1995-610-126-50116 
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MISSION 

OF 

ROME LABORATORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Materiel 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, reliability 
science, electro-magnetic technology, photonics, signal processing, and 
computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


